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Evaluation of the radiative and conductive heat loss from a molten metal
sample to the cell has been made in order to obtain accurate thermal diffusivi-
ties of molten metals at high temperature with a laser flash method. The results
suggest that thermal diffusivity values of molten nickel can be determined in the
temperature range from 1728 to 1928 K with an uncertainty of ± 3% in com-
parison with case considering only the effect of radiative heat loss. The useful-
ness of a cell for a laser flash method has been confirmed by applying simulated
results to evaluate the heat leakage in the thermal diffusivity measurement of
molten metals.

KEY WORDS: heat loss; laser flash method; molten nickel; numerical anal-
ysis; thermal diffusivity.

1. INTRODUCTION

The thermal diffusivity of molten metals at high temperature are of impor-
tance in casting of metals and designing various plants using heat transfer
fluids for fusion reactors, breeder reactors, and thermal energy storage
systems. The laser flash method is recognized as one of the most powerful
techniques to measure the thermal diffusivity of molten metals at high
temperature when a precise sample thickness is available. For this purpose,
several types of cells have been developed [1, 2].



Recent measured values of the thermal diffusivity of molten copper
[3] using the laser flash method are found to be smaller than a frequently
used reference value [4], and the heat leakage is suggested as a possible
origin of such a difference. However, no analysis has been carried out with
respect to the effect of heat loss from a molten metal sample to the cell at
high temperature.

For the laser flash method for molten metals at temperatures higher
than 1500 K, a simple cell has recently been developed by the present
authors [5]. Then, the main purpose of this work is to estimate the effect
of the radiative and conductive heat losses at the interface between the
molten metals and the cell materials, and the experimental uncertainty will
be analyzed using the measured thermal diffusivity values of molten nickel
at high temperatures.

2. EXPERIMENTAL

The newly developed cell and apparatus are shown in Fig. 1 [5]. This
cell consisted of three layers. The top and bottom were made of sapphire
disks, which were transparent for laser beam and infrared ray. The cell wall
was made of an alumina tube, and the molten metal was sandwiched
between the two sapphire disks as shown in Fig. 1. The entire cell was
compressed with the graphite fixture to suppress the volume expansion of
the metal due to the phase transition from the solid to the molten state, i.e.,
to obtain an accurate sample thickness of the molten metal at elevated

Fig. 1. Schematic diagram of a laser flash apparatus and sample cell.
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temperatures. Four small holes in the upper sapphire plate work as a buffer
to minimize the volume expansion of the molten metal and to have a resi-
dual gas inside the sample.

The front surface of the molten metal is subjected to a single pulse
from a laser beam through the upper sapphire disk. The resulting tempera-
ture rise of the sample is measured with an infrared detector through the
lower sapphire disks, and the thermal diffusivity value is estimated from
the temperature response curve.

3. NUMERICAL MODEL FOR THERMAL DIFFUSIVITY ANALYSIS
OF MOLTEN METALS

Under the present experimental conditions, the conductive heat loss
at the interface must be taken into account quantitatively along with the
radiative heat loss.

A schematic diagram of the configuration of the cell assembly is
shown in Fig. 2. The following conditions are assumed to establish the heat
transport equation governing the heat transport phenomena in the cell with
the appropriate boundary and initial conditions:

(1) one-dimensional heat flow,

(2) the whole cell is under adiabatic conditions for the conductive
heat flow,

(3) each layer is homogeneous,

(4) all thermophysical properties of the three layers are known,

Fig. 2. Schematic diagram of the geometry of a three-
layered cell.
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(5) the thermal contact resistance at the interface between layers is
uniform and has the same value at both the upper interface and
the lower interface,

(6) the heat pulse is uniformly absorbed on the front surface,
(7) the radiative heat loss is proportional to the temperature differ-

ence, Tm − Te,
(8) there is no absorption of the energy in the medium of the cell

because the cell is transparent to both the laser pulse and
infrared, and

(9) radiative heat loss occurs only on the surface of the molten metal.

The heat conduction equation for each layer is mathematically
described in the following equations:

“
2Tc1

“x2 −
1
ac

“Tc1

“t
=0 (1)

“
2Tm

“x2 −
1

am

“Tm

“t
=0 (2)

“
2Tc2

“x2 −
1
ac

“Tc2

“t
=0 (3)

The boundary conditions are given as shown below.
At the top of the upper sapphire disk,

5“Tc1

“x
6

x=0
=0 (4)

At the bottom of the upper sapphire disk,

5lc
“Tc1

“x
−

1
R

(Tc1 − Tm)6
x=(lc)−

=0 (5)

At the top of the molten metal,

5lm
“Tm

“x
−

1
R

(Tc1 − Tm)+4esT3
e (Tm − Te)6

x=(lc)+

=0 (6)

At the bottom of the molten metal,

5lm
“Tm

“x
−

1
R

(Tm − Tc2) − 4esT3
e (Tm − Te)6

x=(lc+lm)−

=0 (7)
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At the top of the lower sapphire disk,

5lc
“Tc2

“x
−

1
R

(Tm − Tc2)6
x=(lc+lm)+

=0 (8)

At the bottom of the lower sapphire disk,

5lc
“Tc2

“x
6

x=2lc+lm

=0 (9)

where T is the temperature increase, a is the thermal diffusivity, l is the
thermal conductivity, R is the thermal contact resistance, l is the thickness,
e is the thermal emissivity of the surface of the sample, s is the Stefan–
Boltzmann constant, and Te is the steady-state temperature. The subscripts
c and m refer to the cell and molten metal, respectively. The subscripts c1
and c2 denote the upper sapphire layer and the lower layer, respectively.
When t is 0, arbitrarily the energy, Q (see Fig. 2) is absorbed on the front
surface of the sample.

The following dimensionless parameters are also introduced for sim-
plification;

a+
c =

ac

am
, t+=

amt
l2

m

, l+
c =

lc

lm
, x+=

x
lm

,

l+
c =

lc

lm
, R+=

lmR
lm

, Y=
4esTe3lm

lm

(10)

The contribution of the radiative heat loss is expressed by a dimensionless
parameter called a Biot number, Y, for the front and back surfaces of the
molten metal. The normalized heat conduction equation for each layer is
given below.

“
2Tc1

“x+ −
1

a+
c

“Tc1

“t+=0 (11)

“
2Tm

“x+ −
“Tm

“t+=0 (12)

“
2Tc2

“x+ −
1

a+
c
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“t+=0 (13)

Heat Leakage in Thermal Diffusivity Measurement of Molten Metals 1739



The normalized boundary conditions are as follows:

5“Tc1

“x+
6

x+=0
=0 (14)

5l+
c

“Tc1

“x+ −
1

R+ (Tc1 − Tm)6
x+=(l+c )−

=0 (15)

5“Tm

“x+−
1

R+ (Tc1 − Tm)+Y(Tm − Te)6
x+=(l+c )+

=0 (16)

5“T+
m

“x+ −
1

R+ (Tm − Tc2) − Y(Tm − Te)6
x+=(l+c +1)−

=0 (17)

5l+
c

“Tc2

“x+ −
1

R+ (Tm − Tc2)6
x+=(l+c +1)+

=0 (18)

5“Tc2

“x+
6

x+=2l+c +1
=0 (19)

As shown in Fig. 2, these equations for heat transfer are solved using
numerical analysis, Eqs. (11) to (19) should be transformed into the finite
difference form of temperature as shown below.

Tc1(0, j+1)=(1 − 2Fc) Tc1(0, j)+2FcTc1(1, j) (20)

Tc1(ic1, j+1)=Tc1(ic1, j)+Fc[Tc1(ic1+1, j)+Tc1(ic1 − 1, j) − 2Tc1(ic1, j)]

(1 [ ic1 [ n − 1) (21)

Tc1(n, j+1)=Tc1(n, j)+2Fc[Tc1(n − 1, j)+Tc1(n, j)]

−
2a+

c Dt+n
R+l+

c l+
c

[Tc1(n, j) − Tm(0, j)] (22)

Tm(0, j+1)=Tm(0, j)+
2 Dt+m

R+ [Tc1(n, j) − Tm(0, j)]

− 2Y Dt+m[Tm(0, j) − Te] − 2Fm[Tm(0, j) − Tm(1, j)] (23)

Tm(im, j+1)=Tm(im, j)+Fm[Tm(im+1, j)+Tm(im − 1, j) − 2Tm(im, j)]

(1 [ im [ m − 1) (24)

Tm(m, j+1)=Tm(m, j)+
2 Dt+m

R+ [Tc2(0, j) − Tm(m, j)]

− 2Y Dt+m[Tm(m, j) − Te]+2Fm[Tm(m − 1, j) − Tm(m, j)]
(25)
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Tc2(0, j+1)=Tc2(0, j)+2Fc[Tc2(0, j)+Tc2(1, j)]

−
2a+

c Dt+n
R+l+

c l+
c

[Tc2(0, j) − Tm(m, j)] (26)

Tc2(ic2, j+1)=Tc2(ic2, j)+Fc[Tc2(ic2+1, j)+Tc2(ic2 − 1, j) − 2Tc2(ic2, j)]

(1 [ ic2 [ n − 1) (27)

Tc2(n, j+1)=(1 − 2Fc) Tc2(n, j)+2FcTc2(n − 1, j) (28)

where Fc=a+
c Dt+/(l+

c /n) and Fm=a+
m Dt+/(1/m) are grid Fourier

numbers of the cell and molten metals. ic1, im, and ic2 are node numbers of
the upper sapphire layer, the molten metal, and the lower sapphire layer,
respectively. Dt+ is the normalized resolution of time, j is the time step,
j+1 and refers to a time Dt+ later than j.

The essential points of the conventional thermal diffusivity analysis,
considering only the effect of radiative heat loss, are summarized in the
Appendix for convenience of the discussion.

4. THEORETICAL TEMPERATURE RESPONSE CURVE OF
MOLTEN METALS

The theoretical temperature response curves of the rear surface of the
sample are shown in Fig. 3. Dimensionless parameters a+

c , l+
c , and l+

c are
introduced by using heat transfer property values and sizes of sapphire
and molten nickel. The values of the specific heat, thermal diffusivity,
and density of sapphire at 2000 K used here were 1340 J · kg−1 · K−1 [6],
1.15 × 10−6 m2 · s−1 [6], and 3800 kg · m−3 [6], respectively. On the other
hand, the values of the specific heat, thermal diffusivity, and density of
molten nickel at 1828 K used here are 656 J ·kg−1 ·K−1 [7], 1.07×10−5 m2 · s−1

and 7800 kg · m−3 [8], respectively. The value of the thermal diffusivity of
molten nickel (1.07 × 10−5 m2 · s−1) at 1828 K was obtained from the exper-
imental data [5]. The normalized resolution of time, Dt+, is 1 × 10−5. The
partitioned numbers n and m are 300 and 100, respectively. By this cal-
culation condition, the convergence of the solution could be achieved.
Temperature response curves reach a maximum by transmitting heat, and
after that, become attenuation curves by radiation and conduction. The
thermal diffusivity of molten metals could be obtained by comparing the
measured temperature response curve with the theoretical one calculated by
a finite difference equation. On the other hand, information on the thermal
contact resistance, R, and thermal emissivity, e, of the surface of the molten
metal is very limited. Their values are also changed considerably by the
experimental conditions. Thus, it is very difficult to provide at the present
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Fig. 3. Theoretical temperature response curves considering (a) conductive heat loss and (b)
radiative and conductive heat loss for case of a+

c =0.189, l+
c =1, l+

c =0.109.

time a reasonable Biot number, Y, representing the contribution of the
radiative heat loss and R+ representing that of the thermal contact resis-
tance, based on literature values. Accordingly, thermal diffusivities of
molten metals am are considered to be obtained by using R+ and Y as
unknown parameters, in this work.

5. THERMAL DIFFUSIVITY OF MOLTEN METALS

Data processing for comparisons between theoretical and measured
temperature response curves is as follows. First, dimensionless parameters
are performed by the same analysis as the laser flash method, which takes
into account only the radiation heat loss. The dimensionless temperature
rise, Tg=T/Tmax is shown in Fig. 4 in a logarithmic plot against dimen-
sionless time, tg=t/t1/2 by using theoretical temperature response curves
given in Fig. 3. When the temperature is simply reduced by the radiative
heat loss, attenuation of the temperature response curve is known to give a
linear relationship with a slope, k, in the long-time region. On the other
hand, when the temperature reduction is generated by conductive heat loss,
the temperature response curve does not show a different behavior in the
attenuation. The calculated results are given in Fig. 4, plotting with a
straight-line approximation in the time range of 8 [ tg [ 12 as an example.
In the case of radiative heat loss only, the thermal diffusivity can be
obtained by estimating the effect of heat radiation from the slope, k. In
order to estimate the effect of thermal contact resistance, it is necessary to
introduce another parameter in the following procedure. The slope, k, and
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Fig. 4. Logarithmic plot of normalized theoretical temperature response curve considering
(a) conductive heat loss and (b) radiative and conductive heat loss for case of a+

c =0.189,
l+

c =1, l+
c =0.109.

the intercept, ln TM, in Fig. 4 are calculated for many different values of R+

and Y by varying the normalized thermal contact resistance in the range of
100.5 [ R+ < . and the Biot number in the range of 0 [ Y [ 0.25.

The relation between k and ln TM is shown in Fig. 5. Under this con-
dition, it is obvious that sets of R+ and Y (R+, Y ) and sets of k and ln TM

(k, ln TM ) show one-to-one correspondence. Accordingly, (R+, Y) can be
obtained from the experimental data of (k, ln TM). The data sets of (R+, Y)
enable us to determine the theoretical temperature response curve and the
dimensionless half rise time, t+

1/2=amt1/2/l2
m. In other words, where t+

1/2 is

Fig. 5. Relationship between k and ln TM for
calculated results for molten nickel.
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equal to K, the thermal diffusivity of molten metals can be calculated from
t1/2 by Eq. (A5) (see Appendix).

An iterative calculation is required because R+, Y, a+
c , and l+

c , which
are necessary to calculate the theoretical temperature response curve,
depend on am. The following data analysis is used to determine thermal
diffusivity values in this work.

1. Values of Ot1/2P, OkP, and Oln TMP and are obtained as follows,
where O P indicates a value derived from the measured tempera-
ture response.

(a) The maximum value of the temperature OTmaxP and Ot1/2P are
obtained from the measured temperature response curve,
OT(t)P.

(b) The normalized temperature response curve OTg(tg)P is
obtained by reducing the temperature and time of tempera-
ture response curve by OTmaxP and Ot1/2P.

(c) The normalized temperature response curve OTg(tg)P is con-
verted to logarithmic values, lnOTg(tg)P.

(d) From the decay part of the temperature response curve,
lnOTg(tg)P in the normalized time, tg between 8 and 12, the
slope, k and the intercept, Oln TMP for the following equation
are obtained by least-squares estimation.

lnOTg(tg)P=Oln TMP−OkPOtgP (29)

2. For the first estimated value for the iteration, the thermal diffu-
sivity of the molten metal, am, is obtained from values of k and t1/2

without considering conductive heat loss to the cell as described in
the method in the Appendix.

3. a+
c , l+

c , and l+
c are calculated from am, the specific heat, the

density, and the size of the cell.
4. A table of theoretical values of k, ln TM, and K is obtained by the

following process.

(a) The theoretical temperature response curve is calculated with
values of R+, Y, a+

c , l+
c , and l+

c from Eqs. (20) to (28).
(b) Tmax and t1/2 are obtained from the theoretical temperature

response curve. The value of K is equal to t1/2.
(c) A logarithmic plot of OT(t)P in the range of 8 < tg < 12 is

performed by the same dimensionless operation for the
measured temperature response curve. The slope, k, and the
intercept, ln TM, are obtained by a least-square method.
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Table I. Selected Values of k, ln TM, and K for R+ and Y Derived from the Theoretical
Temperature Response Curve

Y

0.05 0.1 0.2

R+ k ln TM K k ln TM K k ln TM K

100.5 0.0358 0.125 0.121 0.0451 0.155 0.119 0.0623 0.207 0.114
101 0.0288 0.117 0.127 0.0397 0.155 0.124 0.0597 0.221 0.119
101.5 0.0200 0.0890 0.130 0.0317 0.132 0.127 0.0530 0.206 0.121
102 0.0156 0.0724 0.132 0.0276 0.118 0.128 0.0495 0.195 0.122

5. This table (Table I) presents results that can be regarded as
discretized values for the continuous function K against k and
ln TM. K(OkP, Oln TMP), corresponding to measured temperature
response curves, are calculated as follows.

(a) Each K in Table I is regarded as a function of k. K(OkP) is
obtained by interpolation of k.

(b) Each ln TM in Table I is regarded as a function of k.
ln TM(OkP) is obtained by interpolation of k.

(c) K(OkP) in (K(OkP), ln TM(OkP)) obtained is regarded as
a function of ln TM(OkP). K(OkP, Oln TMP) is obtained by
interpolation of ln TM(OkP).

6. Thermal diffusivity am is obtained with K(OkP, Oln TMP) by
Eq. (A5) (see Appendix).

7. Iterative calculations for operations 3 to 6 are performed, until am

converges.

6. RESULTS AND DISCUSSION

The temperature response curve for molten nickel at 1848 K is shown
in Fig. 6 and logarithmic plot of normalized that is shown in Fig. 7. The
simulated results of the relationship between k and ln TM compared with
the experimental results of molten nickel are also given in Fig. 8. It is found
that the experimental results of k and ln TM for molten nickel are concen-
trated near the curve of R+=.. Small dispersion is caused by fluctuations
detected in the signal-to-noise ratio in the temperature response curves.
Accordingly, the results of Fig. 8 clearly suggest that the effect of the con-
ductive heat loss at the interface between the molten metal sample and cell

Heat Leakage in Thermal Diffusivity Measurement of Molten Metals 1745



Fig. 6. Temperature response curve for
molten nickel at 1848 K.

material on the temperature response curve is small in comparison with the
radiative component, within the present experimental conditions.

Good reproducibility of the experimental thermal diffusivity data of
molten nickel was confirmed by doing the measurements four times at a
given condition (see Fig. 9). The results of Fig. 8 show the linear relation-
ship of thermal diffusivity for molten nickel as a function of temperature,
and its standard deviation is estimated to be 1.75 × 10−7. Then, the thermal

Fig. 7. Logarithmic plot of normalized
temperature response curve for molten nickel
at 1848 K.
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Fig. 8. Calculated relationship between k
and ln TM compared with experimental
results of molten nickel.

diffusivity values of molten nickel can be described by the following equa-
tion, where a is in m2 · s−1 and T is in K.

a=6.61 × 10−9(T − 1728)+1.02 × 10−5 (30)

The thermal diffusivity value of molten nickel at the melting point
(1728 K) is found to be 36% smaller than that of solid nickel at 1500 K

Fig. 9. Thermal diffusivity of molten nickel
as a function of temperature obtained in this
work.
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[4]. Of course, such a distinct difference in the thermal diffusivity value is
attributed to a change in the structure from the atomic distribution with
periodicity to that with no periodicity at melting. It may also be worth
noting that the thermal diffusivity values of molten nickel show a slightly
positive temperature dependence, although its origin cannot be identified
at the present time. It should also be noted from the present analysis
described in Section 5, that the uncertainty of the thermal diffusivity of
molten nickel is ± 3% in comparison with thermal diffusivity values
obtained considering only the effect of radiative heat loss. Moreover, the
thermal diffusivity value of molten nickel at 1928 K is 6.7% smaller than
the value derived without considering the radiative heat loss.

7. CONCLUSION

The thermal diffusivity of molten nickel was determined by calculating
and measuring the temperature response curves of the laser flash method.
The results are summarized as follows.

(1) Considering both the radiative and conductive heat losses from
a molten metal sample to the cell, the calculated temperature
response curves are obtained for the numerical model. The
thermal diffusivity of molten nickel was determined from the
calculated temperature response curves.

(2) The uncertainty of the thermal diffusivity of molten nickel is
± 3% in comparison with thermal diffusivity results obtained
considering only the effect of radiative heat loss.

(3) The usefulness of a cell for the newly developed laser flash
method has been analyzed, and it would be interesting to extend
the simulated results to evaluate the heat leakage in the thermal
diffusivity measurement of molten metals.

APPENDIX

When only the radiative heat loss is taken into account to obtain the
thermal diffusivity, the temperature response curve for the bottom of the
molten metal changes according to the following equation:

T=
Q

rmCmlm
C
.

n=0
An exp (− X2

nt+) (A1)
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where Q (see Fig. 2) is the total energy absorbed by the molten metal, rm is
the density of the molten metal, and Cm is the heat capacity of the molten
metal.

An=2(− 1)n X2
n(X2

n+2Y+Y2)−1 (A2)

X0=(2Y)1/2 (1 − Y/12+11Y2/1440) (A3)

for n \ 1

Xn=np+2Y/(np) − 4Y2/(np)3+{16/(np)5 − 2/[3(np)3]} Y3

+{− 80/(np)7+16/[3(np)5]} Y4 (A4)

Equation (A1) is plotted in Fig. 10. When the radiative heat loss from
the molten metal surface is taken into account, the thermal diffusivity of
the molten metal, am is obtained with the following equation [9].

am=K
l2

m

t1/2
(A5)

where K is the coefficient determined theoretically by the ratio of the radi-
ative heat loss to the conductive heat flux, and the value of K becomes
0.1388 at adiabatic conditions where the heat loss is negligibly small [10].
t1/2 is the time required for the back surface of the sample to reach one half
of the maximum temperature rise.

Fig. 10. Theoretical temperature response
curves considering radiative heat loss.
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In order to estimate the value of K, the following procedure was con-
ducted. When the radiative heat loss becomes significant, the temperature
of the back surface of the sample reaches its maximum and decreases along
the line proportional to the following equation:

T=
Q

rmCmlm
A0 exp(− X2

0t+) (A6)

Time and temperature rise are normalized using t1/2 and the maximum
temperature rise, Tmax. The normalized time is defined as tg=t/t1/2 and the
normalized temperature rise is defined as Tg=T/Tmax. When Tg is plotted
logarithmically against tg (see Fig. 11), Y can be obtained from the slope
of the logarithmic attenuation, k=d ln Tg/dtg. In addition, if Y is deter-
mined, K can be obtained. Ohta et al. [11] reported the coefficient K in the
range between k=0 and 0.40. The coefficient of K can be given in the
following form as a function of k.

K=0.1388 − 0.3873k+1.369k2 − 3.223k3+2.805k4 (A7)

In practice, k is determined, in the first step, from the measured tempera-
ture response curve in the longer time region and, subsequently, we obtain
the K value with the obtained value of k from Eq. (A7) and thus the
thermal diffusivity value of molten metal is obtained from Eq. (A5).

Fig. 11. Logarithmic plot of normalized
theoretical temperature response curve con-
sidering radiative heat loss.
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